Interfacing EMTP-RV with other software using C++

Jean-Gabriel Roumy
April 30th, 2009
Overview

> EMTP-RV DLL interface
> Interface implementation using C++

> Usage
 - Simulink
 - 3rd party software
 - Distributed Simulation

> Future work
What is the DLL Interface?

- DLL is an external, separate piece of code linked to EMTP-RV at run-time.
- EMTP-RV offers an API allowing the implementation of user models.
- API includes all functions necessary to interact with computational engine.
- API functions and structures are written in FORTRAN 95.
Why C++?

- Interface with 3rd-party software

C++ interface maps EMTP memory space

C++ skeleton that handles all calls to/from EMTP

User implements interface functions
Interface Usage

> Linking with control code
> Controllable and observable signals are inputs/outputs to 3rd-party control libraries
> No participation from user model in system matrices
Using Simulink design in EMTP

- Protection relay algorithm developed at IREQ using Simulink
- Impossible to duplicate design in EMTP
- Production code and model code stem from single Simulink design
Using Simulink design in EMTP

> Use existing Simulink designs

> Availability of Simulink extensive list of toolboxes

> Complex Simulink models
 - Multiple sample times
 - C-language S-functions

> Simulink code is portable, compact, fast and efficient
Using Simulink design in EMTP

- C++ code generated with Embedded Real-Time toolbox
- User defines inputs, outputs, tunable parameters
- Compiled design has 3 top-level functions
 - Initialise
 - Step
 - Terminate
Simulink DLL Interface Architecture

EMTP-RV

User Model

C++ DLL

Instance 1
Local Data Structures

Simulink Code

Instance 2
Local Data Structures
Generating Simulink DLL Interface

> Integrate Simulink code to interface code and compile together
> Use observable and controllable signals as input/output pins in EMTP
> Generate symbol in EMTP
Limitations

> If Simulink design is modified, must regenerate and compile
> Each design requires customizing interface code
> Matlab variable initialisation cannot be compiled
> Fixed time step
Linking with 3rd party software

- Coupling with other C++ models
- 3rd party can provide black-box models generated with their own software
- Example: HVDC controller model generated by manufacturer, provided to HQ as black-box model
Distributed Simulation

- High Level Architecture is IEEE standard
- Federation controlled by RTI
- Distributed simulation can be performed with any HLA compatible software
- EMTP DLL interface acts as bridge between EMTP and RTI
Distributed Simulation

> NS2 (telecom simulator) modified to support HLA
> Co-simulation run with NS2 and EMTP
> Drawback: high overhead, not necessary to share at each timestep
> Early steps of development
Future Work

> Get the process of generating a model more user-friendly and generic
> Co-simulation with Simulink
> Development of HLA co-simulation
The end

> Questions ?